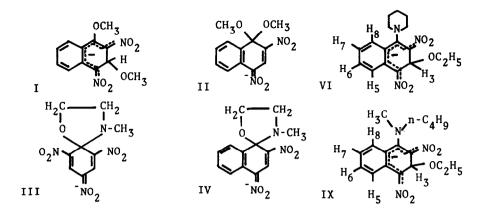
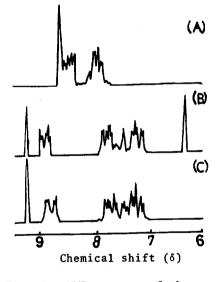
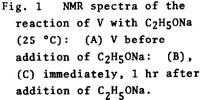

AROMATIC NUCLEOPHILIC SUBSTITUTION IV.¹ EXISTENCE OF 1,3- AND 1,1-DISUBSTITUTED MEISENHEIMER COMPLEXES IN THE REACTIONS OF 1-SEC-AMINO-2,4-DINITRO-NAPHTHALANES WITH SODIUM ETHOXIDE

S.Sekiguchi, K.Shinozaki, T.Hirose, K.Matsui, and T.Itagaki Department of Synthetic Chemistry, Gunma University, Kiryu, Gunma 376, JAPAN


(Received in Japan 20 March 1974; received in UK for publication 1 April 1974)

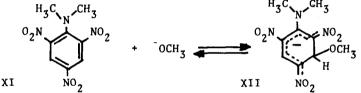
We found in previous work^{1,2} that same 1,1-disubstituted Meisenheimer complexes (hereinafter referred to as σ complex) could be formed in the reactions of 1-sec-amino-2,4-dinitronaphthalenes with sodium methoxide or in the reactions of 1-alkoxy-2,4-dinitronaphthalenes with secondary amines. In these


works, however, no 1,3-disubstituted σ complex could be found. Regarding 1,3disubstituted 2,4-dinitronaphthalene σ complexes,³ Millot and Terrier⁴ reported the existence of I by use of visible spectra [λ_{max} 505, 550-600(sh) nm]. There has, however, been no NMR evidence for I as a transient species, although NMR measurement would be a more conclusive means for confirming σ complexes.


In addition, we found in previous work⁵ that the spiro σ complexes (III and IV) could be isolated at room temperature in the reaction of 1-[N-methy1-(2'-hydroxy) ethylamino]-2,4,6-trinitrobenzene or 1-[N-methy1-(2'-hydroxy) ethyl-amino]-2,4-dinitronaphthalene with MeONa; these results are the same as those of Bernasconi et al.⁶ The NO₂ group ortho to C-l is nearly copolanar with the ring, whereas the dihedral angles have been observed to be up to 62° between the ring and NO₂ group ortho to the ethoxyl one in trinitrophenetole, presumably owing to the steric compression between these groups.⁷ Release of this compression in the complex may correspond to one of the principal reasons for greater thermodynamic stability of 1,1-disubstituted complexes such as II, relative to 1,3-disubstituted ones such as I.

On the basis of the above-described results we have recently carried out the title reactions and found that at first a 1,3-disubstituted σ complex was formed, and then, changed to the 1,1-disubstituted one.

When ethanolic C_2H_5ONa was added to a solution of 1-N-piperidy1-2,4-dinitronaphthalene (V) in DMSO (V 2.06 × 10⁻⁴ mol, C_2H_5ONa 2.06 × 10⁻⁴ mol,



 $DMSO/C_2H_5OH = 0.5 m1/0.076 m1$), the solution immediately colored red, indicating the formation of a complex. The time-dependent NMR spectra of the reaction system are shown in Fig. 1. Immediately after mixing, the sharp singlets appeared at 6 9.24 and 6.29, attributable to the H_z protons of VII and VI, respectively, 1,2 and the $H_{5,8}$ and $H_{6,7}$ peaks of V disappeared, and, instead, the H_g peak was shifted to δ 8.91 (downfield) and the H₅ and $H_{6,7}$ peaks to δ 7.77 and 7.27 (upfield), respectively. In 1 hr after mixing, the H_z peak of VI disappeared (Fig. 1C). As clearly shown by a comparison of the spectrum in Fig. 1A with that in Fig. 1C, almost V changed to the 1,1-disubstituted σ complex (VII) in 1 hr after mixing. From these results the following formula is indicated on the basis of the work of Millot and Terrier:^{3,8}

$$v + c_2 H_5 ONa$$
 VI (unstable)
VII (stable)

In the reaction of 1-(N-methyl-n-butylamino)-2,4-dinitronaphthalene (VIII) with C_2H_5ONa , the similar results were also obtained. Our present work is the first case, in which the existence of 1,3-disubstituted 2,4-dinitronaphthalene σ complexes could be confirmed by NMR measurement.

Crampton and Gold reported that N,N-dimethylamino-2,4,6-trinitrobenzene (XI) reacted with sodium methoxide to give a 1,3-disubstituted σ complex (XII) only:⁹

However, our results are much different from their ones. The relevant NMR data are summarized in Table 1.

References

- Part III, S.Sekiguchi, K.Shinozaki, T.Hirose, K.Matsui, and K.Sekine, Bull.Chem.Soc.Japan, submitted for.
- 2 S.Sekiguchi, T.Itageki, T.Hirose, K.Matsui, and K.Sekine, Tetrahedron, <u>29</u>, 3527(1973).
- 3 M.J.Strauss, Chem.Rev., 70, 667(1970).
- 4 F.Millot and F.Terrier, Bull.Soc.Chim.Fr., 2692(1969).
- 5 S.Sekiguchi and T.Shiojima, Bull.Chem.Soc.Japan, 46, 693(1973).
- 6 C.F.Bernasconi, R.H.deRossi, and C.L.Gehriger, J.Org.Chem., 38, 2838(1973).
- 7 C.M.Gramaccioli, R.Destro, and M.Simmonetta, Acta Crystallogr., 24, 129(1968)
- 8 F.Millot and F.Terrier, Bull.Soc.Chim.Fr., 3897(1971).
- 9 M.R.Crampton and V.Gold, J.Chem.Soc. (B), 893(1966).

	Compound	H ₃	н ₈	н ₅	^H 6,7
v	H_{7} H_{6} H_{5} NO_{2} H_{3} H_{3} H_{3}	8.60	8.47		7.92
VI	$H_{8} \xrightarrow{NO_{2}} H_{6} \xrightarrow{H_{5}} \xrightarrow{NO_{2}} H_{3} \xrightarrow{NO_{2}} H_{3}$	9.24	8.81 ^b 7	7.72 ^b	7.20 ^b
VII	H_{7} H_{6} H_{5} NO_{2} NO_{2} H_{3}	6.29	8.81 ^b 7	7.72 ^b	7.20 ^b
VIII	$H_{7} \xrightarrow{H_{3}C_{N}} H_{4}^{C_{4}H_{9}}$ $H_{6} \xrightarrow{H_{5}} H_{5}^{NO_{2}}$	8.65	8.50		7.94
IX	$H_{1}^{H_{3}C} \rightarrow H_{1}^{h_{2}} \rightarrow H_{2}^{h_{2}}$ $H_{1}^{H_{2}} \rightarrow H_{1}^{h_{2}} \rightarrow H_{2}^{h_{2}}$ $H_{1}^{H_{2}} \rightarrow H_{2}^{h_{2}} \rightarrow H_{2}^{h_{2}}$	9.28	8.79 ^b	7.71 ^b	7.19 ^b
x	$H_{7} \xrightarrow{H_{8}}{NO_{2}} H_{3} \xrightarrow{CH_{3}}{NO_{2}} H_{3}$	6.42	8.79 ^b	7.71 ^b	7.19 ^b

^a Chemical shifts relative to internal TMS.

^b The H₈, H₅, and H_{6,7} peaks of 1,3-disubstituted σ complexes (VI, IX) are not distinguishable from those of 1,1-disubstituted ones.